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Abstract 

This paper discusses approaches to cooperative 
coevolution of form and function for autonomous vehicles, 
specifically evolving morphology and control for an 
autonomous micro air vehicle (MAV).  The evolution of a 
sensor suite with minimal size, weight, and power 
requirements, and reactive strategies for collision-free 
navigation for the simulated MAV is described.  Results 
are presented for several different coevolutionary 
approaches to evolution of form and function (single- and 
multiple-species models) and for two different control 
architectures (a rulebase controller based on the 
SAMUEL learning system and a neural network 
controller implemented and evolved using ECkit). 

1. Introduction 

This study is motivated by the belief that the natural 
process of coevolving the form and function of li ving 
organisms can be applied to the design of morphology 
and control behaviors of autonomous vehicles in order to 
simpli fy the design process and improve the performance 
of the system.  The work presented here is a continuation 
of the research published in [2].  

In this study, the concept of the coevolution of form 
and function is applied to the Micro Air Vehicles (MAVs) 
domain.  Due to the size of the aircraft (wingspan on the 
order of 6 inches) as well as the variety of applications, 
the design of the sensory payload and the controller of the 
MAV, is quite complex due to the complex relationships 
between them.  The design issue addressed explicitl y in 
this study is minimization of weight and power 
requirements.  The number of sensors and their sensing 

capabiliti es affect these requirements directly and also 
indirectly through the increase of computational power 
requirements.  The goal of the study is to evolve a 
minimal sensor suite, which allows for the most eff icient 
task-specific control.  The experimental task requires the 
MAV to navigate to a specified target location, while 
avoiding colli sion with obstacles.  Previously the 
coevolution was performed using two cooperating genetic 
algorithm-based systems, SAMUEL [8] and GENESIS 
[7].  The current study considers alternative 
coevolutionary models as well as alternative controller 
architectures in order to reach a better understanding of 
the domain and the algorithms, which will guide future 
research. The single- and multiple-species coevolutionary 
models are presented as alternative ways of coevolving 
form and function.  The discussed controller architectures 
include a rulebase controller based on the SAMUEL 
learning system and a neural network controller based on 
the ECkit’s [19] implementation of multi -layered feed-
forward neural networks.  

The remainder of this paper briefly outlines the 
related work and then describes in detail s our 
implementation of coevolution of the behaviors and the 
characteristics of a sensor suite that would allow the 
MAV to perform colli sion-free navigation with maximum 
eff iciency.  The simulated environment, aircraft, and 
sensors are described along with the detail s of the two 
controllers and the learning systems.  Finall y, current 
results are presented, and the future direction of the 
research is outlined. 

2. Related Work 

Evolutionary algorithms have been successfull y 
applied to automate the design of robots’ morphology as 
well as the design of the controllers, but the concept of 
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coevolution of form and function has surfaced only 
recently. 

There has been a great deal of work done in the area 
of evolution of function for autonomous vehicles.  
Behaviors have been evolved using a variety of 
representations such as neural-networks or rule bases, for 
a variety of tasks including colli sion-free navigation [17], 
[22], exploration [9], as well as shepherding [23], [18], 
and docking and tracking, just to mention a few.  While 
most of the work is done is simulation, the same 
behaviors can be evolved in real world as shown by [5]. 

In parallel, research is being done in the area of 
evolution of form.  Evolutionary algorithms have been 
applied to the design of structures assembled out of parts 
[6], design of aircrafts [11], as well as to the design of 
sensors such as a compound eye [13] or auditory 
hardware [14].  [16] presents a framework for the study of 
sensor evolution in a continuous 2-dimensional virtual 
world (XRaptor). 

Finall y, in recent years, work has began on 
coevolving form and function for autonomous agents.   
[3] and [4] present continuing research on concurrent 
evolution of neural network controllers and visual sensor 
morphologies, for visually guided tracking.  [24] presents 
a system for the coevolution of morphology and behavior 
of virtual creatures that compete in a physicall y simulated 
three-dimensional world.  Similar work is presented in 
[10] where the body and brain of the creatures are evolved 
using Lindenmayer systems as generative encoding.  In 
[12] a hybrid genetic programming/genetic algorithm 
approach is presented that allows for evolution of both 
controllers and robot bodies to achieve behavior-specified 
tasks. [15] introduces a LEGO simulator that allows the 
user to coevolve controllers and body plans using an 
interactive genetic algorithm in simulation before 
constructing the LEGO robots.  [1] presents the 
comparative study of evolution of a control system given 
a fixed sensor suite, and coevolution of sensor 
characteristics (placement and range) and the control 
architecture for the task of box pushing.  

The work presented in this paper is related to the 
above work, but differs in several aspects.  This study 
looks at different models of cooperative coevolution as 
well as the control architectures in hope of achieving a 
better understanding of the coevolutionary requirements 
for this domain.  The majority of the previous work 
involved evolution of neural controllers; our approach 
looks at evolution of stimuli -response rules as well .  The 
sensors’ characteristics initiall y evolved include the 
number of sensors and the beam width, with the future 
possibilit y of evolution of range and explicit placement of 
each sensor.  Also, even though the evolution is 
performed in simulation, the simulator closely models the 
real aircraft and its environment.  Finall y, the control 
behaviors are not evolved in a specific setup of an 

environment as in [1], [15], and [12], but rather each 
single trial is performed in a randomly and dynamicall y 
created environment in order to improve generalit y of the 
evolved solutions.   

3. Evolution of Sensor Design and Control 
for MAV 

The objective of the study is to evolve a sensor suite 
with a minimal number of sensors, which allows for the 
most eff icient task-specific control.  This section gives an 
overview of the system architectures used to coevolve the 
sensor characteristics and the control of the MAV whose 
task is a colli sion-free navigation to a specified target 
location. 

In [2] the learning system used for coevolution of 
form and function was composed of two cooperating 
genetic algorithm-based systems, SAMUEL and 
GENESIS.  SAMUEL evolved the stimuli -response rules 
to control the MAV, while GENESIS was used to evolve 
characteristics of the sensors for the aircraft.  The two 
systems created a loop in which the output from one 
learning system is the input to the other one.  For each 
member of the population being evaluated by GENESIS 
representing a specific sensor configuration, SAMUEL 
had to evolve the best colli sion-free navigation behavior.  
Due to the ineff iciency of the implementation of this 
architecture, the need arose for alternative architectures.  
The single- and multiple-species coevolutionary models 
were considered for this study.  

3.1 Single-Species Coevolution 

In a single-species coevolutionary model for 
coevolution of form and function, the individual 
(chromosome) in the population, contains the genetic 
material describing the information of both the 
morphology and the control behavior of the autonomous 
agent.  During each generation, each individual in the 
population is evaluated in turn based on its task 
performance and qualit y of the morphology, and then 
children solutions are produced using evolutionary 
operators such as mutation and crossover.  This cycle is 
performed until a satisfactory solution is found or the 
evolution stagnates.  In this model, only the evaluations 
can be performed in parallel. 

In this work, the single-species coevolutionary model 
has been used to coevolve form and function with a 
rulebase controller based on the SAMUEL learning 
system and with a neural network controller implemented 
using ECkit li braries.  The chromosome in the population 
contains a floating-point vector, which describes the 
sensor suite of the MAV, and a set of stimulus-response 
rules in case of SAMUEL controller or a vector of 



floating-point values representing weights of a neural 
network, which implement the colli sion-free navigation 
behavior. The results of the experiments using this 
coevolutionary model for both controller types are 
presented in Section 6.1. 

3.2 Multiple-Species Coevolution 

Our multiple-species coevolutionary model is based 
on the model of the cooperative coevolution [20].  In this 
model as applied to the coevolution of form and function, 
the genetic material describing the morphology and the 
control behavior is decomposed into separate species.  
The individual in one population contains the genetic 
material describing the morphology of the agent while the 
individual in the other population contains genetic 
material of a control behavior.  Each population is 
evolved separately, but in terms of the same global fitness 
function that is based on the performance of the task and 
the qualit y of the morphology of the agent.  The 
evolutionary cycle for each species is the same as for the 
population in the single-species model except that the 
member of one population is evaluated in terms of the 
best behavior (as defined by fitness) of the other species.  
Such decomposition of the problem allows for better 
understanding of the problem and simpli fies the search 
space.  Also, in this model both the learning and the 
evaluations can be paralleli zed.  

Currently, the multiple-species coevolutionary model 
has only been used to coevolve form and function with a 
neural network controller implemented using ECkit.  The 
first population contains individuals, implemented as 
floating-point vectors, whose genetic material describes 
the sensor suite of the MAV.  The second population 
contains individuals that implement the colli sion-free 
navigation behavior as a two-layer feed-forward neural 
network.  The results of the experiments using this 
coevolutionary model for a neural network controller are 
presented in Section 6.2. 

3.3 Fitness Function 

The morphology of the sensor suite and the control 
behavior of the MAV are evolved in simulation.  During 
each evaluation, a number of episodes are performed that 
begins with placement of the MAV at a random distance 
away from the target facing in a random direction, which 
is followed by a random placement of trees in the 
environment.   The episodes end with either a successful 
arrival of the MAV at the target location, a loss of the 
MAV due to energy/time running out, or a loss of the 
MAV due to colli sion with an obstacle.  The fitness of the 
individual is based on the qualit y of the sensor suite and 
execution of the task and is defined as follows: 

if (got to goal) 
 payoff is based on 
  the distance MAV traveled (see Section 5.3.3) 
            PLUS 
  the quality of the sensor suite (see Section 4.3.3) 
else if (crashed or run out of time) 
  payoff based on 
  the distance away from target (see Section 5.3.3) 

It should be noted that the contribution due to the 
qualit y of the sensor suite is considered only once the task 
performance is satisfactory and that payoff is only 
assigned once the episode has been completed. 

The following sections will discuss the detail s of the 
evolution of form (Section 4.0) and function (Section 
5.0).  The goals of each learning task will be reviewed, 
followed by implementation detail s and a short 
description of the learning method, the representation and 
the specific fitness function used. 

4. EVOLUTION OF FORM 

In this section, the detail s of the MAV’s sensor suite 
configuration and its evolution are discussed.    

4.1 Problem Description 

There are a wide variety of sensors that could be 
implemented on the MAV, but the final make up of the 
sensor suite is constrained by the size, weight, and power 
capacity of the vehicle.  The objective of this study is to 
evolve a most power-eff icient sensor suite that guarantees 
an eff icient task-specific control.  Power eff iciency is 
assumed for this study to be inversely proportional to 
sensor coverage (beam width and range). 

4.2 Problem Representation 

The model (Figure 1) of the range sensor is based on 
a simple range sensor.  It returns the range to the closest 
obstacle in its field of view.  The evolvable sensor 
characteristics include: 

1. range of the individual sensor 
2. beam width of the individual sensor 
3. placement of individual sensor on the vehicle 

Figure 1.  Sensor Model. 



In this study, only the number and the beam width of 
each of the sensors are being evolved.  The number of 
sensors is evolved implicitl y since values of beam width 
and/or range equal to zero imply that the sensor doesn’ t 
exist.  Nine sensors are placed symmetricall y along the 
direction of flight in increments of 22.5 degrees with the 
maximum sensor range of 200.0 tenths of feet. 

4.3 Implementation of Evolution 

4.3.1 Representation.  The sensor suite characteristics 
are represented as a vector of nine floating-point values 
each in [0 .. 1] range.  Each gene value is mapped to 0 to 
45 degrees range that defines the beam width of the 
sensor. 

4.3.2 The Learning Method.  The basic genetic 
operators, mutation and crossover, are independent of the 
coevolutionary model used to evolve the characteristics of 
the sensor suite of the MAV as well as the controller 
being used.  In all cases, a Gaussian mutation (mu = 0 and 
sigma = [0.01 .. 0.15 .. 0.2]) and a two-point crossover are 
used.  Currently, the selection operator used in the 
evolution of the sensor suite characteristics, is specific to 
a technique used to evolve the controller. 

SAMUEL uses standard genetic algorithms and other 
competition-based heuristics to evolve the solution.  It 
specificall y uses a fitness-proportional selection method 
to choose the individuals out of the population, which 
means that the number of offspring is proportional to the 
parent’s fitness.  Also, the sigma of the Gaussian mutation 
of genes is fixed at 0.15 during learning. 

The evolutionary technique chosen from the ECkit � � � � � � � � � � � 	 � � 
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sigma of the Gaussian mutation operator is evolved along 
with the individuals, but it cannot be higher than 0.2. 

4.3.3 Fitness Function Contribution.  The fitness of the 
sensor suite is inversely proportional to its coverage and 
contributes [0.0 .. 0.2] to the global fitness functions, but 
only if the agent behavior allows it to complete the task, 
i.e.: navigate safely to the target location.  The 
contribution is calculated as follows: 

ƒFORM(x) = 0.2 * (1.0 – (C(x) / CEXP)) 

where x is an individual or part of the individual whose 
genetic code contains only the information on the 
characteristics of the sensor suite; C(x) is the coverage of 
the sensor suite calculated as the sum of the beam widths 
of individual sensor; and CEXP is the maximum possible 
sensor coverage for the experiment; CEXP is currently 
equal to 405.0 (9 * 45.0).  

5. Evolution of Function 

In this section, the detail s of the MAV’s control task 
and its evolution are discussed.  Experimental detail s of 
the simulated environment, aircraft, and sensors are 
provided along with the detail s of the learning systems 
used. 

5.1 Problem Description 

The MAV must be able to eff iciently and safely 
navigate among obstacles (trees) to a target location.  The 
desired behavior should maximize the number of times 
the MAV reaches the target location while minimizing the 
distance traveled to that location.  The generalit y of 
evolved control should be ensured due to a random setup 
of the environment for every evaluation. 

5.2 Problem Representation 

5.2.1 Environment.  The world as well as the aircraft 
itself is modeled in a high fidelit y, 6-DOF flight simulator 
(Figure 2), which includes an accurate parameterized 
model of a 6-inch MAV and a model of the task 
environment. Although the simulator allows for accurate 
modeling of sensor noise, winds, and wind gusts, this 
initial study does not take advantage of these capabiliti es.  
The low-level control for the MAV is implemented using 
a number of PID controllers, which allow the user to 
control the aircraft by specifying only the turn rate values; 
the PID controllers adjust speed and altitude of the plane 
appropriately.  The trees (obstacles) are modeled as 
spheres on top of cylinders in order to decrease the 
computational complexity of the environment.  Any 

Figure 2.  The screenshot of the 3-D 
simulated environment used for the 
experiments.  The white sphere marks the 
target and dark gray (or green) spheres 
with light gray cylinders mark the 
obstacles (trees). 



contact between the plane and the tree constitutes a 
colli sion.  The density of trees is user-defined as a number 
of trees per square foot assuming uniform distribution and 
was set to 2.5 trees per hundred square feet.  At the 
beginning of each simulated flight, the MAV is placed in 
a random location within a specified area away from the 
target.  The target is stationary and reachable during every 
trial. 

5.2.2 Sensors.  It is assumed that the MAV has a sensor, 
which returns the relative range and bearing to the target.  
Also, the aircraft is equipped with a number of range 
sensors.  Each sensor is capable of detecting obstacles and 
returning the range to the closest object within its field of 
view.  The exact makeup of the sensor suite is evolved as 
described in Section 4.3.   

5.2.3 Actions/Effectors.  There is a discrete set of actions 
available to control the MAV.  In this study, the only 
action that is considered specifies discrete turning rates 
for the MAV.  The control variable turn_rate is between –
20 and 20 degrees in increments dependent on the 
learning method used.  As mentioned, the altitude and the 
speed of the plane are adjusted as necessary by underlying 
PID controllers. 

5.3 Implementation of Evolution 

Due to the choice of the controllers for this study, the 
methods for evolution of the control behavior for the 
MAV for the task of colli sion-free navigation are 
architecture dependent.  The following sections discuss 
the detail s of the evolution for both, the rulebase 
controller evolved using SAMUEL learning system and a 
neural network controller evolved using ECkit. 

5.3.1 Rulebase Controller.  SAMUEL implements 
behaviors as a collection of stimulus-response rules.  Each 
stimulus-response rule consists of conditions that match 
against the current sensors of the autonomous vehicle, and 
an action that suggests action to be performed by it.  An 
example of a rule (gene) might be: 

RULE 122 
 IF  bearing = [-20, 20] AND  
          range4 < 45 

THEN SET turn_rate = -100 

Each rule has an associated strength with it as well as 
a number of other statistics.  During each decision cycle, 
all the rules that match the current state are identified.  
Confli cts are resolved in favor of rules with higher 
strength.  Rule strengths are updated based on rewards 
received after each training episode.  For this study, 
SAMUEL uses the following sensors: 

- range1 .. range9:  Value between [5 .. 200] in 10 
tenths of feet increments specifies the distance to 
the closest obstacle within sensor’s field of view. 

- range:  Value between [5 .. 2000] in 20 tenths of 
feet increments specifies the distance to the 
target. 

- bearing:  Value between [-180 .. 180] in 45 
degree increments specifies the bearing to the 
target. 

The action parameter, turn_rate, specifies the turn rate for 
the MAV in the range [-20 .. 20] in 5 degree increments. 

The system must learn a behavior for navigating the 
MAV to the target location while avoiding obstacles.  The 
behaviors, which are represented as a collection of 
stimulus-response rules, are learned in the SAMUEL rule 

learning system (Figure 3).  
SAMUEL uses standard genetic algorithms and other 

competition-based heuristics to solve sequential decision 
problems.  It features Lamarckian operators 
(speciali zation, generali zation, merging, avoidance, and 
deletion) that modify decision rules on the basis of 
observed interaction with the task environment.  
SAMUEL has to perform a number of evaluations in 
order to provide history for Lamarckian operators, to 
coalesce rule strengths, and to account for the noise in the 
evaluations.  The original system implementation is 
described in greater detail i n [8]. 

5.3.2 Neural Network Controller.  The ECkit li brary 
[Potter WWW] contains various representations for 
organisms, members of the species under evolution.  For 
this study, organisms use a floating-point vector 
representation.  The organisms contain the genetic code, 
which describes the connection weights of the neural 
network controller (Figure 4), which implements the 
colli sion-free navigation behavior.  

Figure 3.  SAMUEL Learning System. 



For this study, the MAV’s controller is implemented 
as a two-layer feed-forward neural network.  There are 11 
input nodes (9 range sensors, bearing and range to the 
target), 5 hidden nodes, and one output node.  All hidden 
nodes and the output node use a standard sigmoid trigger 
function.  The output of the controller is mapped to the 
range [-20 .. 20] in 1-degree increments and defines the 
turn rate of the MAV.  The network is full y connected and 
each hidden and output node has a bias associated with it, 
hence the floating-point vector contains (I+1)*H + 
(H+1)*O values in range [-MAX_DOUBLE, 
MAX_DOUBLE], where I is the number of the inputs, H 
is the number of the hidden nodes, and O is the number of 
the output nodes. 

ECkit is based on the multiple-species coevolutionary 
model [20] as briefly described in Section 3.2 and as 

shown in Figure 5.  Each species is evaluated based on the 
global fitness function in terms of the representative, in 
this case the best individual, from all the other species in 
the ecosystem.  ECkit provides the user with a variety of 
evolutionary operators whose parameters can be tuned for 
the application.  The user is required to implement the 
domain for the ecosystem.  Detail s of the system 
implementation are described in [19]. 

The same evolutionary algorithm was chosen to 
evolve the neural network controller for colli sion-free 
navigation as for evolution of sensor suite characteristics, " # $ " % & $ ' ( ) * + , - . / 0 " % . 1 & " 2 $ " , 3 4 ' ( , 5 0 $ / " . 6 7 $ 1 8 * " .
100) with Gaussian mutation (mu = 0 and adaptive sigma 
= [0.01 .. 1.0]) and two-point crossover.   To account for 
the noise in the evaluations, a number of trials are 
performed during each evaluation. 

5.3.3 Fitness Function Contribution.  The fitness of the 
controller is proportional to the distance MAV traveled 
during the successful trial or the minimum distance away 
from the target during an unsuccessful trial, and 
contributes [0.0-0.3 .. 0.5-0.8] to the global fitness 
functions.  The contribution is calculated as follows: 

 0.8 * (1.0 – DS/D(t)), if successful trial 

ƒFUNC(x) =  
 0.3 * (1.0 – DA/DS), if unsuccessful trial 

where DS is a initial distance away from the target, D(t) is 
total distance traveled during the trial, and DA is the 
minimum distance away from the target during the trial. 

6. Current Results 

In this section, the results of the experiments 
performed are presented.  The results are discussed in 
terms of the internal fitness function (Section 3.3) as well 
as the external performance, which is defined as number 
of times the MAV arrived at the goal.  The qualit y of the 
evolved solutions is also evaluated in harder and easier 
environments, to get a feel for their abilit y to generali ze.  
A random behavior (random turn rate values) failed to 
perform the task under all the conditions considered.  

6.1 Single-Species Coevolution 

This section describes the single-species approach to 
coevolution of form and function for rulebase and neural 
network controllers. 

Figure 4.  Neural network controller. 

Figure 5.  Coevolutionary model of ECkit. 
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6.1.1 SAMUEL Controller.  The learning curve, plotting 
the internal fitness against the number of evaluations, is 
shown in Figure 6.  Given the simplicity of seeding 
SAMUEL with initial heuristic rules, an initial population 
was created which consisted of simple hand-coded rule 
sets such as random walk, emergency obstacle avoidance, 
and going towards the goal.  All the initial sensor suites 
contained 9 sensors each with 45-degree beam width.  To 
obtain a better estimate of the solutions fitness in face of 
high variance, the fitness was averaged over 100 trials.  
The initial solution as described above, obtained a 29.18% 
level in terms of internal fitness with external 
performance around 23%.  The best evolved individual 
(generation 192) had internal fitness of 67.73% and 68% 
external performance.  The evolved sensor suite had eight 
out of the nine sensors (no sensor at 67.5 degree location) 
with total beam width of 104.8 degrees.  The results for 
this experiment are summarized in Table 1.   

 Fitness 

 Internal External 

# of sensors 

(total 
coverage) 

Initial 29.2% 23% 9 (405) 

Best 67.7% 68% 8 (104.8) 

Table 1.  Summary of the results for the 
single-species coevolutionary model with 
rulebase controller.  The internal fitness, 
external performance (averaged over 100 
runs), and the characteristics of the sensor 
suite are shown for all conditions. 

The qualit y of the solution was also evaluated in 
simpler and more complex environments to see how well 
it generali zes.  In the simpler environment (approx. 1.25 

trees per hundred square feet), the solution obtained 
internal fitness of 80.6% and external performance of 
84%.  In the more complex environment (approx. 5 trees 
per hundred square feet), the solution’s internal fitness 
decreased to 39.9% and external performance to 33%.    
These results suggest the solution’s abilit y to generali ze. 

6.1.2 Neural Network Controller.  The learning curve, 
plotting the internal fitness against the number of 
evaluations, is shown in Figure 7.  The initial population 
of neural network controllers was randomly initiali zed, as 
were the sensor suites.  Due to time constraints and 
inabilit y to currently paralleli ze the evolution of the 
neural network controller, each member of the population 
was evaluated only 10 times, which given the high 
variance of the internal fitness function, introduced 
discrepancy between the internal fitness as seen by the 
learning algorithm and the actual internal fitness of the 
solution.  Since the qualit y of learning performed by the 
evolutionary algorithm was based on the internal fitness, 
but the actual fitness allows for better comparison to 
external performance, both the internal fitness and the 
actual fitness of the solutions are reported. A randomly 
generated solution obtained internal fitness of 19.6% 
while in fact it’s value (averaged over 100 runs) was only 
2.27% with an external fitness of 0%.  The best evolved 
solution (generation 113) had an internal fitness of 
86.04%, better estimated at 43.5%, and was able to safely 
navigate the MAV to the target 46% of the time.   The 
evolved senor suite consisted of all nine sensors with total 
beam coverage of 159.2 degrees.  The results for this 
experiment are summarized in Table 2.    

As before, the qualit y of the best individual was 
evaluated in simpler and more complex environments to 
see how well it generali zes.  In the simpler environment, 

Figure 7.  Best-so-far internal fitness 
(average of 10 evaluations) curve for 
coevolution of form and function using a 
single-species model based on neural 
network controller evolved using 
evolutionary strategy in ECkit. 

Figure 6.  Best-so-far internal fitness 
(average of 100 evaluations) curve for 
coevolution of form and function using a 
single-species model based on SAMUEL. 
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the solution obtained internal fitness of 70.63% and an 
external performance of 82%.  In the more complex 
environment, the solution’s internal fitness decreased to 
23.2% and external performance to 17%.    These results 
again show that the solution is most likely able to 
generali ze. 

Fitness  

Internal  
(Actual 

Internal) 

External 

# of sensors 

(total 
coverage) 

Initial 19.61%  
(2.27% ) 

 0.00% 9 (215.6)  

Best 86.04%  
(43.48%) 

46% 9 (159.2) 

Table 2.  Summary of results for the single 
species experiments with a neural network 
controller.  The internal fitness as seen by the 
learning algorithm is given as well as the 
fitness of solution averaged over 100 trials, 
the external fitness, and the make up of the 
sensor suite are shown. 

6.2 Multiple-Species Coevolution 

This section describes the multiple-species approach 
to coevolution of form and function for currently only a 
neural network controller.  Implementation of the 
multiple-species coevolutionary model to be used with 
SAMUEL is underway. 

6.2.1 Neural Network Controller.  The learning curve, 
plotting the internal fitness against the number of 
evaluations, is shown in Figure 8.  Both, the behavior and 
the sensor suite populations were initiali zed with random 
individuals.  As in the previous experiment (Section 
6.1.2), inadequate number of evaluations (only 10), 
introduced discrepancy between the internal fitness and 
the actual value of the solution.  The baseline for this 
experiment was the same as in the single-species 
coevolution with neural network controller (Section 
6.1.2).  A randomly generated solution obtained internal 
fitness of 19.6% with more accurate estimate of 2.27% 
and no abilit y to reach the goal.  The best evolved 
solution  (generation 186) had a 87.14% internal fitness, 
which was closer to 52.7% with external performance at 
53%.  The evolved sensor suite makes use of eight out of 
nine sensors  (no sensor at 67.5 degree location) with a 
total beam width of 174.7 degrees.  The results for this 
experiment are summarized in Table 3.   

The qualit y of the solution was again evaluated in 
simpler and more environments to see how well it  

generali zes.  In the simpler environment (approx. 1.25 
trees per hundred square feet), the solution obtained 
internal fitness of 68.1% and external performance of 
75%.  In the more complex environment, the solution’s 
internal fitness decreased to 29.14% and external 
performance to 33%.    Those results show solution’s 
aptitude for generali zation. 

Fitness  

Internal  
(Actual 

Internal) 

External 

# of sensors  

(total 
coverage) 

Initial 19.61% 
(2.27% ) 

 0.00% 9 (215.6)  

Best 87.14% 
(52.69%) 

53% 8 (159.3) 

Table 3.  Summary of results for the multiple 
species experiments with a neural network 
controller.  The internal fitness as seen by the 
learning algorithm is given as well as the 
fitness of solution averaged over 100 trials, 
the external fitness, and the make up of the 
sensor suite are shown.   

7. Conclusions and Future Work 

This paper discussed approaches to the cooperative 
coevolution of form and function for autonomous 
vehicles, specificall y evolving the morphology  (the 
sensor suite) and the control (goal seeking  and colli sion 
avoidance behaviors) for an autonomous micro air 

Figure 8.  Best-so-far internal fitness 
(average of 10 evaluations) curve for 
coevolution of form and function using a 
multiple-species model based on neural 
network controller evolved using 
evolutionary strategy in ECkit. 
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vehicle. This research is significant, because it can result 
in more eff icient synergistic designs of autonomous 
vehicles.   

Alternative models of cooperative coevolution were 
presented, including single- and multiple-species models, 
for two different control architectures, a rulebase 
controller evolved using the SAMUEL learning system 
and a neural network controller evolved and implemented 
using ECkit.  Experimental results were presented 
demonstrating that both models and both control 
architectures could learn to coevolve a minimal sensor 
suite and corresponding behaviors, and that the resulting 
evolved systems were tolerant to changes in environment 
complexity. 

Once the implementation of the multiple-species 
coevolutionary model combined with the SAMUEL 
learning system is complete, additional data will be 
collected in order to establi sh statistical significance of 
the experimental results.   Given that data, it should be 
possible to draw some conclusions about the preferred 
representation and coevolutionary model for this domain.  
In the follow-up work, additional characteristics of the 
sensor suite such as explicit placement of the sensors on 
the airframe body and the ranges of the sensors, will be 
evolved. 

While this study has specificall y emphasized the 
coevolution of sensors and control, this general 
methodology is also applicable to design parameters of 
the vehicle structure.  In future work, other aspects of the 
parametric model that define the vehicle platform, 
specificall y ones that will result directly in design 
decisions for the airframe structure, will be considered.  
Aspects of the airframe can be optimized for classes of 
missions and expected behaviors.  Future work might also 
consider reconfigurable hardware to allow for changes in 
the system as missions change over time.  Effects of 
sensor noise and variabilit y in the environmental 
conditions such as wind speed and direction on the 
evolved system will be considered as well . 
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